A Q-learning-based memetic algorithm for multi-objective dynamic software project scheduling
نویسندگان
چکیده
Software project scheduling is the problem of allocating employees to tasks in a software project. Due to the large scale of current software projects, many studies have investigated the use of optimization algorithms to find good software project schedules. However, despite the importance of human factors to the success of software projects, existing work has considered only a limited number of human properties when formulating software project scheduling as an optimization problem. Moreover, the changing environments of software companies mean that software project scheduling is a dynamic optimization problem. However, there is a lack of effective dynamic scheduling approaches to solve this problem. This work proposes a more realistic mathematical model for the dynamic software project scheduling problem. This model considers that skill proficiency can improve over time and, different from previous work, it considers that such improvement is affected by the employees’ properties of motivation and learning ability, and by the skill difficulty. It also defines the objective of employees’ satisfaction with the allocation. It is considered together with the objectives of project duration, cost, robustness and stability under a variety of practical constraints. To adapt schedules to the dynamically changing software project environments, a multi-objective two-archive memetic algorithm based on Q-learning (MOTAMAQ) is proposed to solve the problem in a proactive-rescheduling way. Different from previous work, MOTAMAQ learns the most appropriate global and local search methods to be used for different software project environment states by using Q-learning. Extensive experiments on 18 dynamic benchmark instances and 3 instances derived from real-world software projects were performed. A comparison with seven other meta-heuristic algorithms shows that the strategies used by our novel approach are very effective in improving its convergence performance in dynamic environments, while maintaining a good distribution and spread of solutions. The Q-learning-based learning mechanism can choose appropriate search operators for the different scheduling environments. We also show how different trade-offs among the five objectives can provide software managers with a deeper insight into various compromises among many objectives, and enabling them to make informed decisions.
منابع مشابه
A multi-objective memetic algorithm for risk minimizing vehicle routing problem and scheduling problem
In this paper, a new approach to risk minimizing vehicle routing and scheduling problem is presented. Forwarding agents or companies have two main concerns for the collection of high-risk commodities like cash or valuable commodities between the central depot and the customers: one; because of the high value of the commodities transported, the risk of ambush and robbery are very high. Two; the ...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملModified Pareto archived evolution strategy for the multi-skill project scheduling problem with generalized precedence relations
In this research, we study the multi-skill resource-constrained project scheduling problem, where there are generalized precedence relations between project activities. Workforces are able to perform one or several skills, and their efficiency improves by repeating their skills. For this problem, a mathematical formulation has been proposed that aims to optimize project completion time, reworki...
متن کاملAn Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملA multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project
This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 428 شماره
صفحات -
تاریخ انتشار 2018